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Point-of-use (POU) water treatment and safe storage techniques are effective in improving microbial 

water quality and decreasing diarrhoeal disease incidence and have potential to be effective 

interventions in humanitarian emergency contexts. Coagulant/disinfection products (CDPs) can provide 

microbial quality improvement, turbidity reductions, and a protective post-treatment free chlorine 

residual. The objective of this study was to compare the treatment performance of 4 commercially-

available CDPs with regards to humanitarian water treatment objectives. This is the first comparison of 

its kind it was demonstrated the (at times significant) inter- and intra-variability of CDP treatment 

performance between products and with regards to varying water quality, respectively. It is 

recommended that implementing agencies should conduct field testing for context specific assessments of 

product performance and acceptability by beneficiaries. Knowledge of product formulation can also help 

in evaluating its treatment potential. 

 

 

Introduction 
Point-of-use (POU) water treatment and safe storage techniques are effective in improving microbial water 

quality and decreasing diarrhoeal disease incidence (Clasen et al. 2007). Lantagne and Clasen (2012) have 

recently pointed towards evidence that POU water treatment techniques can be effective interventions in 

humanitarian emergency contexts. In such situations, water quality objectives (The Sphere Project 2011) are 

closely aligned with WHO (2011b) guidelines, namely: no Escherichia coli (or thermotolerant coliforms) 

per 100 mL; turbidity less than 5 nephelometric turbidity units (NTU); and a free chlorine residual (FCR) of 

0.5 mg/L. 

Of the several available POU water purification techniques, coagulant/disinfection products (CDPs) can 

provide microbial quality improvement, turbidity reductions, and a protective post-treatment FCR. Most 

CDPs come in sachets containing a coagulant and a disinfectant along with other (sometimes proprietary) 

components in powdered form. Typically, these products require 4 steps, specifically: mixing; settling; 

filtration; and disinfection contact time. Such a treatment approach could be advantageous in relief 

interventions where the affected population is dispersed (Luff and Dorea 2012) and a centralised water 

treatment and supply chain is unfeasible. Despite their fixed formulation (i.e. single dose), CDPs are 

intended to treat waters of variable quality. 

The objective of this study was to compare the treatment performance of 4 commercially-available CDPs 

(Table 1). This assessment was done with regards to the removal of bacterial indicators of faecal origin (e.g. 

E. coli and thermotolerant coliforms), turbidity reductions, and FCR concentrations (The Sphere Project 

2011) as well as the recent quantitative microbial risk assessment (QMRA) based criteria (default values) for 

the evaluation of POU water treatment options (WHO 2011a). 
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Table 1. Summary characteristics of tested CDPs. 

Product Form Coagulant Disinfectant Volume treated (L) 

A Powder/sachet (4g) Ferric sulfate Ca hypochlorite 10 

B Powder/sachet (2.35) Ferric sulfate Ca hypochlorite 10 

C Powder/sachet (2.5g) Ferric sulfate Ca hypochlorite 15 

D Powder/sachet (2.5g) Alum Ca hypochlorite 20 

 

Materials and methods 
The instructions of use of each CDP were adapted to a laboratory setup. A programmable Kemwater 

Flocculator 2000 (Kemira) stirring paddle was used to provide uniform mixing for the recommended times. 

The test water matrix consisted of a 20 % dilution of mixing primary settled wastewater in dechlorinated tap 

water (WHO 2011a) at room temperature; simulating also a grossly polluted untreated water source. Test 

water turbidity was adjusted to approximately 100 NTU using kaolin. pH was tested at three values (pH 5.0, 

7.0, and 9.0). One test (at pH 7) was also run at 5 °C to assess the effects of cold temperatures. A crushed ice 

jacket around the mixing vessel was used to keep test water at 5 ±1 °C. Keeping in line with the objective of 

testing the products under challenging conditions, a J-Cloth (Associated Brands, Canada) was used as a 

filtration material. 

Bacterial (i.e. E. coli or thermotolerant coliforms) concentrations, turbidity, pH, and FCRs were measured. 

With the exception of FCR (sampled only after treatment), all other measurements were before and after 

treatment with the CDPs. Triplicate bacteriological sampling was conducted in sterile bottles containing 

sodium thiosulfate. Tests for each condition were repeated 3 times. A 24 hour FCR decay test was also 

conducted in simulated storage conditions in waters of variable chlorine demands (i.e. high, low, and 

demineralised water). 

 

Results and discussion 
 

 

 

 

Figure 1. Average bacterial faecal indicator 

log reductions. 

 Figure 2. 24 hour FCR decay tests (product D 

omitted for clarity). 

 

Figure 1 summarises test results (some conditions omitted for clarity). Bacterial faecal indicator log 

reductions were affected by cold temperatures (CPDs A, B, and C) or alkaline pH (CPDs B, C and D) 

relative to reference conditions (i.e. pH 7, 20 °C). Such effects can be attributed to reduced 

coagulation/sedimentation efficiencies and disinfection kinetics (for cold temperatures) as well as the 

formation of the less effective hypoclorite ions in alkaline conditions (Edzwald 2011). Notably, raw water 

concentrations were not the same for each product tested with regards to faecal indicator organisms tested. 

Hence, relatively lower log reductions do not necessarily signify worse final water quality, as maximum 

removals were observed in many cases with the exception of product C. This was the only one not to 

achieve the 4 log reduction default target (WHO 2011a) due to its low initial chlorine dose (0.4 mg/L FCR 
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in demineralised water) and the challenging high chlorine demand of the test water (i.e. diluted primary 

treatment effluent). It was also the only CDP that failed to consistently produce waters of “low risk” (< 10 

cfu/100 mL) or better. In general, CDP C produced treated water considered to be of “high” (i.e. 101 to 1000 

cfu/100 mL) or “very high” (i.e. > 1000 cfu/100 mL) risk, depending on the condition tested. All other 

CDPs could be rated as “highly protective” as per WHO (2011a) criteria (i.e. 4 log removal) with regards to 

bacterial indicator removals (obs.: viral and protozoan removals were not tested). 

24 hour FCR decay tests reveal the variability in disinfectant concentration between products (Figure 2). 

Also, it is apparent that product B has an accelerated FCR decay, possibly due to its formulation given the 

standard conditions in which the test was conducted. Such tests also revealed important data with regards to 

potential acceptability taste issues and capacity to attain 24 hour storage target FCRs. Ideally, FCR residuals 

should be less than 2 mg/L in order to avoid consumer complaints with regards to chlorinous flavours. This 

was not achieved with all products (e.g. product B) at the time of treatment. However, it is equally important 

that minimum residual levels are maintained (0.5 mg/L at 30 minutes and 0.2 mg/L at 24 hours) for their 

protective action against post-treatment/storage contamination. This is a difficult balance to make and 

depends on each product’s formulation and water quality characteristics (i.e. chlorine demand). In this case, 

only sodium hypochlorite based products were tested. However, it is possible that NaDCC (i.e. sodium 

dichloroisocyanurate) based products may offer advantages with regards to maintaining FCRs due to their 

residual “reservoir” capacity (Clasen and Edmondson 2006). 

With CDPs turbidity reduction is a two step process. Some of the particles are removed through the 

coagulant-assisted sedimentation and particles/flocs remaining in suspension are subsequently filtered 

through a cloth for further removal. Turbidity reductions were mainly affected by cold temperatures for all 

products when considering both the settled and finished (filtered) water turbidity. As with chlorination, 

coagulation and settling are also known to be affected by cold temperatures (Edzwald 2011). Notably, 

product D performed worse with regards to turbidity removal (even in room temperature experiments). 

Since such products are designed for a single coagulant dose (for a given volume), its coagulant 

concentration becomes an important parameter to consider. It is possible that product D has an inadequate 

alum content. Also, it is worth noting that the cloth material used for filtration was a non-woven viscose 

fibre fabric chosen to simulate a worst case scenario with regards to choice of filtration material. Thus, a 

different filtration cloth such as the “thick 100 % cotton” material that is recommended by some products 

could yield better results. Of the 12 different tests conducted (i.e. 4 products and 3 water quality conditions), 

only three tests had residual turbidities within recommended limits (< 5 NTU). However, thicker cloths 

could also lead to longer filtration times. This, in turn, could result in lower adhesion rates in terms of long-

term product usage, which could have negative impacts in terms of diarrhoeal disease prevention. Longer 

treatment times have been previously considered as deterrents to sustained POU product use (Sobsey et al. 

2008; Luoto et al. 2011). 

 

Conclusion 
This is the first comparison of its kind it was demonstrated the (at times significant) inter- and intra-

variability of CDP treatment performance between products and with regards to varying water quality, 

respectively. It is recommended that implementing agencies should conduct field testing for context specific 

assessments of product performance and acceptability by beneficiaries. Knowledge of product formulation 

can also help in evaluating its treatment potential and working range. 
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